ECON 7020 Philip Shaw Problem Set 3 Due date: March 6, 2024

Problem 1. Assume a quadratic utility, rational expectations framework and assume that the rate of time preference, ρ equals the interest rate, r. Assume that labour income follows the following stochastic process:

$$y_{t+1} = \lambda y_t + (1 - \lambda)\bar{y} + \epsilon_{t+1} \tag{1}$$

where $E_t \epsilon_{t+1} = 0$ and ϵ_{t+1} is an income innovation, $0 \ge \lambda \le 1$ and \bar{y} is the unconditional mean of labour income.

1. Prove that the consumption function in this case has the following form:

$$c_t = rA_t + \frac{r}{1+r-\lambda}y_t + \frac{1-\lambda}{1+r-\lambda}\bar{y}.$$
(2)

- 2. What happens if $\lambda = 1$? Explain.
- 3. What happens if $\lambda = 0$? Explain.

Problem 2. Suppose a consumer maximizes the following objective function:

$$maxE_t \sum_{i=0}^{\infty} \beta^i u(c_{t+i}) \tag{3}$$

subject to the dynamic budget constraint:

$$A_{t+i+1} = (1+r)[A_{t+i} + y_{t+i} - c_{t+i}]$$
(4)

where

$$y_{t+1} = y_t + \epsilon_{t+1} \tag{5}$$

and $\epsilon_{t+1} \sim N(0, \sigma^2)$.

- 1. Under what circumstances do we get a "certainty equivalent result"?
- 2. Now assume that the utility function is of the exponential form, e.g., $u(c_t) = -(\frac{1}{\alpha})e^{-\alpha c_t}$ where $\alpha > 0$. Calculate the measure of relative risk aversion.
- 3. For a general utility function $u(c_t)$, derive the coefficient of absolute prudence. What is the coefficient of absolute prudence for the utility function mentioned above?
- 4. How does the existence of prudent behavior alter the optimal consumption path found under the certainty equivalent result?